4 resultados para Intracellular pathogens

em Worcester Research and Publications - Worcester Research and Publications - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens that threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. The article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants defend themselves against microbial pathogens through a range of highly sophisticated and integrated molecular systems. Recognition of pathogen-secreted effector proteins often triggers the hypersensitive response (HR), a complex multicellular defense reaction where programmed cell death (PCD) of cells surrounding the primary site of infection is a prominent feature. Even though the HR was described almost a century ago, cell to cell factors acting at the local level generating the full defense reaction has remained obscure. In this study, we sought to identify diffusible molecules produced during the HR that could induce cell death in naïve tissue. We found that 4-methylsulfinylbutyl isothiocyanate (sulforaphane) is released by Arabidopsis thaliana leaf tissue undergoing HR, and that this compound induces cell death as well as prime defense in naïve tissue. Two different mutants impaired in the pathogen-induced accumulation of sulforaphane displayed attenuated PCD upon bacterial and oomycete effector recognition as well as decreased resistance to several isolates of the plant pathogen Hyaloperonospora arabidopsidis. Treatment with sulforaphane provided protection against a virulent H. arabidopsidis isolate. Glucosinolate breakdown products are recognized as antifeeding compounds towards insects and recently also as intracellular signaling and bacteriostatic molecules in Arabidopsis. The data presented herein indicate that these compounds also trigger local defense responses in Arabidopsis tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Economic losses resulting from disease development can be reduced by accurate and early detection of plant pathogens. Early detection can provide the grower with useful information on optimal crop rotation patterns, varietal selections, appropriate control measures, harvest date and post harvest handling. Classical methods for the isolation of pathogens are commonly used only after disease symptoms. This frequently results in a delay in application of control measures at potentially important periods in crop production. This paper describes the application of both antibody and DNA based systems to monitor infection risk of air and soil borne fungal pathogens and the use of this information with mathematical models describing risk of disease associated with environmental parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of recombinant DNA technology allowed scientists to manipulate plant genomes, making it possible to study genes and exploit them to modify novel agronomic traits. Here, we review the current and future potential of genetic modification (GM) strategies used to increase the resistance of plants to oomycete and fungal pathogens. Numerous resistance genes (R-genes) have been cloned, and under laboratory conditions, transgenic plants have given promising results against some important plant pathogens. However, only a few have so far been deployed as commercial crop plants.GMof plants to disrupt pathogenicity, such as by inhibiting or degrading pathogenicity factors, especially by necrotrophic pathogens, has also been exploited. The potential to engineer plants for the production of antimicrobial peptides or to modify defense-signaling pathways have been successfully demonstrated under laboratory conditions. The most promising current technology is genome editing, which allows researchers to edit DNA sequences directly in their endogenous environment. The potential of this approach is discussed in detail and examples where broad-spectrum resistance has been achieved are given.